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In the present work, consideration is given to the method of thermal protection of the walls of high-
power installations (plasmatrons and gas-phase nuclear reactors), made of porous refractory materi-
als, with the use of gas-dust protection. The algorithm for determining the mechanical, thermal, and
thermophysical characteristics of the porous wall of a combustion chamber from the measured in-
crease in the pressure on the exterior surface of the wall is given.

An efficient method of thermal protection of the walls of high-power installations is manufacturing
the walls from porous refractory materials in combination with transpiration gas cooling.

In this work, a combined method is suggested to protect a porous wall of a hydrogen-fuel combustion
chamber, exposed to a high-intensity convective-radiant heat flux, and to diagnose the thermomechanical state
of the wall.

This method is based on the force feeding of cooling gaseous low-boiling compounds of refractory
materials to the combustion chamber through the porous wall. On entering the combustion chamber, the re-
duction of these materials in the flow of a gaseous hydrogen fuel occurs; this reduction is accompanied by
the formation, near the wall, of a gas-dust screen which shields the wall from heating by the radiant compo-
nent of the heat flux.

Measuring the magnitude of the pressure increase of the gaseous compounds fed through the porous
wall allows one to determine the thermophysical characteristics of the wall material and the thermal stresses
in it from the analytical dependences obtained.

The method of thermal protection and diagnostics is considered for the chamber walls of high-power
installations in which the level of the thermal state is determined mainly by the magnitude of the radiant
component of the heat flux. These are power installations with temperatures of the heat flux of thousands of
degrees. They include plasma installations [1] and gas-core nuclear engines of spacecraft [2]. In gas-core nu-
clear engines, hydrogen is used as the working body.

In a plasma reactor, radiation from the plasma arc at a temperature of 10,000 K and high pressures
can efficiently be absorbed by argon or helium flows blackened with the particles of tungsten and carbon.

Spacecraft require an engine with a specific pulse of 5000 sec [2] and a ratio of the thrust to the
engine weight close to 1. For this, it is necessary to heat the working body to 10,000 K. The temperature
over the radius of the plasma nuclear volume changes from 105 near the axis to 104 K on the outer radius of
the active volume, while the pressure reaches several megapascals. In the gas-core nuclear engine, the work-
ing body, apart from its prime objective must provide the confinement of the plasma of enriched uranium
inside the cavity bounded by the moderator wall. To do this, one uses hydrogen, which is tangentially sup-
plied to a cylindrical chamber through slots in the wall with simultaneous feed of blackening particles.
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The disadvantage of this method of blackening the working body of the engine is the nonuniformity
of the distribution of particles near the wall and their coarsening in motion in the chamber [3, 4].

In order to efficiently protect the active volume with a temperature to 10,000 K from radiation, it is
essential [5] that particles with a radius size of 0.005 < r < 0.1 µm be present in the working flow. This can
be achieved by manufacturing the chamber wall from a porous refractory metal or porous glass and by feed-
ing low-boiling compounds of the WCl6 and WF6 type through the chamber wall. On arrival at the engine
chamber, these compounds in the gaseous state interact with the working body and are reduced: 

WCl6 + 3H2 = W + 6HCl → W + 3H2 + 6Cl ,     WF6 + 3H2 = W + 6HF → W + 3H2 + 6F .

In the process of conglomeration, a gas-dust polydisperse screen with a great number of tungsten par-
ticles from an Angstro

..
m to a micrometer in size is formed in the gas medium of the engine chamber. This

degree of polydispersion of the tungsten particles that appear in the wall layer of the working medium of the
engine ensures the shielding of thermal radiation in the ultraviolet region with a wavelength of 0.003
< λ < 0.03 µm.

Another problem under consideration is to determine the thermal state of the cylindrical  porous wall
of the engine, i.e., (a) the magnitude of the received heat flux; (b) surface temperatures; (c) thermal stresses;
(d) boundaries of plastic zones in elastoplastic deformation; (e) the magnitude of the effective thermal con-
ductivity.

In the present work, we describe a method of determining the thermal characteristics of cooled porous
walls exposed to an intense heat flux.

This method is based on measuring the magnitude of the pressure increase of a cooling gas at the
entrance to a porous wall. The gas is fed with a fixed mass flow rate. We measure the magnitudes of the gas
pressure before the beginning of the heat-flux action on the wall and when its thermal state is steady. The
thermal state of the porous wall can be determined from the difference in the measured quantities.

It is established that in the fine-mesh structure of the material wall, the coefficient of heat exchange
between the cooling gas and the wall is infinitely large [6]. As a result, the gas acquires the temperature of
the porous structure already at the entrance to the wall, in practice; a volumetric thermal expansion of the gas
and an increase in the pressure of the coolant before the entrance are observed.

One shape of the combustion chamber of the engine is a cylinder with a wall made of a porous
material. The greatest temperature drop over the wall thickness that determines the required flow rate of the
coolant occurs under steady-state thermal operating conditions of the engine.

By solution of the equation describing the law of conservation of energy for unit length of the cylin-
drical wall in the steady temperature state, we obtain a dependence which characterizes the temperature dis-
tribution over the wall thickness without account for radiation from the exterior  surface:

T = T0 + (T1 − T0) 




R1

r




γ

 , (1)

where γ = (mcp)/(2πλw). From formula (1) we express the temperature T1 in terms of the value of the tem-
perature in the radius-average cross section of the porous wall T

__
. The temperature T1 differs from the average

integral temperature of the wall T0 by no more than 2–3%, i.e.,

T1 = T0 + (T
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For the isothermal state of a porous permeable wall, its temperature, the coolant pressure, and the
coefficient of hydraulic resistance are related to each other by the following dependence [7]:

ξT = 
P1

2 − P2
2

β j2 R
__

Th
 . (3)

In the absence of the coolant dissociation, the hydraulic resistance is virtually independent of the temperature
conditions of flow. When gaseous helium flows through a tungsten porous nonisothermal wall, the correction
factor for nonisothermicity is equal to C 1.02. It can be taken that for T

__
 = Tisotherm

ξT
__
 C ξT . (4)

The hydraulic resistance of porous metal-ceramic walls at temperatures lower than the dissociation tempera-
ture of the coolant changes by 10%. In this case, β is close to 1 and

ξT0
 C ξT

__
 � 

P1
2 − P2

2

j2 R
__

hT
__  . (5)

Dependence (1) with account for Eqs. (2)–(5) can be expressed in terms of the change in the coolant
pressure caused by the heating of the porous wall:

T = T0 
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 . (6)

By substituting expression (6) into the dependences [8] that relate the thermal stresses to the temperature
distribution over the wall thickness, we obtain formulas for determining the thermal stresses in the wall under
the thermal action on the interior surface.

For the deformed state of a porous permeable wall the relations obtained are of the form
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whereas when the load on the end surfaces is absent, these dependences are as follows:

σz
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In determining the thermal stresses from Eqs. (7)–(10), we use the tabulated values of the coefficients
of thermal conductivity, linear expansion, elastic modulus, and the Poisson ratio of the porous wall material
at a temperature determined from the expression

T = 
P1

2 − P2
2

P0
2 − P2

2 T0 . (11)

For porous walls whose hydraulic resistance is temperature-dependent, we use the tabulated values for
the coefficients α, E, µ, and λ at the average temperature of the wall that is determined, for example, from
the condition of linear variation in the quantity (P1

2 − P2
2)/T
__

 characterizing the hydraulic resistance of the wall
as a function of the temperature:
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whence
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From the analysis of dependences (5) and (7)–(11) it is evident that
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The coefficient k is determined from the dependence that describes the nature of change in ξT with tempera-
ture. If the dependence ξT = f(T) is of a linear nature, in this case the coefficient k can be found from ex-
pression (12) according to the results of measurement of (P1

2 − P2
2)/T
__

 at any two temperatures of the wall for
the given flow rate of the coolant.

The material of the wall can be in the elastic or elastoplastic state. With increase in the mechanical
loads or the temperature factors, the zones of plastic deformations over the wall thickness will increase. With
allowance for the investigations carried out in [9, 10], the boundaries of the plastic zones in the steady ther-
mal state of a wall of the permeable cylinder with porous cooling are determined from the expression

rc = rd = 
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 . (15)

From the condition of heat balance of the interior surface of the wall under steady-state conditions of
its heating and disregarding the radiation from the exterior surface, in conformity with [11] we determine the
received heat flux using the dependence

qw = 
mcp

2πR1
 (T1 − T0) . (16)

With account for expression (6), the magnitude of the heat flux will be determined from the formula
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The dependences proposed hold for permeable cylinders with a porosity no higher than 30% in which
l ≥ 2.4√R1(R2 − R1)  and (R1 + R2)/(2h) ≥ 10. The mechanical characteristics of the material change only
slightly with temperature (materials of the porous tungsten and molybdenum type).

Based on the method suggested to determine qw, we developed the design of a sensor for determining
intense radiative heat fluxes [12]. A plane porous plate blackened on the side of the heat flux is used as the
thermally sensitive element. Through this plate the cooling gas is fed toward the heat flux. In this case, the
magnitude of the heat flux is determined from the formula

qw = 
cp

mR
__
ξ

 exp 




mcph

2λw




 ∆p (∆p + 2P0) . (18)

We obtained analytically and confirmed experimentally the dependence of the pressure increase on the exte-
rior surface of the porous wall ∆p in passage of the gas through it on the effective thermal-conductivity co-
efficient of the porous material [13]. The dependence has the form

λw = 
mcp

ln 




qw

cp
 

mR
__
ξ

∆p (∆p + 2P0)




 . (19)

By the method proposed one can measure the effective thermal conductivity of porous materials up
to temperatures which do not cause structural changes in the materials.

NOTATION

T0, wall temperature before thermal loading, K; T1, temperature of the interior surface of the porous
wall, K; l, h, R1, and R2, length, thickness, and inner and outer radii of the porous wall, m; r, running radius,
m; j, specific flow rate of the coolant per second, kg/(m2⋅sec); m, flow rate of the coolant per unit length,
kg/(m⋅sec); cp, heat capacity of the coolant, J/(kg⋅deg); P, pressure, N/m2; P0 and P1, pressure of the coolant
in front of the porous wall in the cold and hot state, N/m2; P2, pressure of the coolant at the exit from the
porous wall, N/m2; ∆p, pressure jump in passage of the gas through the porous wall, N/m2; λw, coefficient of
thermal conductivity of the wall material, W/(m⋅deg); α, coefficient of linear expansion, 1/deg; ξ, coefficient
of hydraulic resistance; β, inertial coefficient, m−1; E, Young modulus, kgf/mm2; µ, Poisson ratio; σT(T),
yield stress, kgf/mm2; σr

T, σθT, and σz
T, radial, tangential, and axial temperature stresses, kgf/mm2; A, hydraulic

resistance of the wall without thermal action; R
__

, gas constant, J/(kg⋅deg); k, coefficient of proportionality in
the linear dependence (12). Subscripts and superscripts: w, wall; T, temperature; p, pressure; r, θ, z, axes in
a cylindrical coordinate system; c and d, internal and external plastic zones, respectively; 0, without thermal
action; 1 and 2, interior and exterior surfaces of the porous wall.
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